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Electro-osmotically induced convection at a permselective membrane
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The paper is concerned with convection at an ion exchange electrodialysis membrane induced by nonequi-
librium electro-osmosis in the course of concentration polarization under the passage of electric current
through the membrane. Derivation of nonequilibrium electro-osmotic slip condition is recapitulated along with
the linear stability analysis of quiescent electrodiffusion through a flat ion exchange membrane. Results of
numerical calculation for nonlinear steady state convection, developing from the respective instability, are
reported along with those for a slightly wavy membrane. Besides these results, we report those of time
dependent calculations for periodic and chaotic oscillations, resulting from instability of the respective steady
state flows, and also the results of recent experiments with modified membranes. These latter rule in favor of
electro-osmotic versus bulk electroconvective origin of overlimiting conductance through ion exchange
membranes.

PACS numbefs): 66.10—x, 82.45:+z, 47.20—k

[. INTRODUCTION Eventually, a fair amount of indications have been accu-
mulated, suggesting that the overlimiting behavior of the ion
1:exchange membranes has to do with some kind of convective
ffrlnixing that develops spontaneously in the depleted diffusion
) . A ayer at the advanced stage of concentration polarization

permselective(charge selectiesolid/liquid interface upon 4,9-11. This has been finally confirmed by a direct experi-

the jpassage of an electric current. This 1S, N particular, ental observation: if the depleted diffusion layer is immo-
basic element of charge transfer across ion exchange eleggi; o by a gel, a plateau is reached at saturation, and the
trodialysis membranes_. The specific aspect of CP we addregs -ess electric noise disappeéﬁ]._ .
here concerns the stationary voltage/curréfd) curves of |t was suggested that gravitational convection, brought
highly permselective cation exchange membranes whichpoyt by the density gradients due to concentration polariza-
typically are of general form depicted in Fig. 1. The follow- tjgp, may destroy the unstirred layg9,10]. It should how-
ing three regions are distinguishable in such a curve. The lowver be remembered that gravitational instability of a laminar
current ohmic region | is followed by a plategegion I, the  sublayer at a smooth solid/liquid interface in a well mixed
“limiting current” ) of a much lower slope. Inflection of the bulk flow may occur only upon the fulfillment of quite gen-
V-C curve at the plateau is followed by region Ill, in which eral hydrodynamic conditions. Thus, whatever the nature of
the slope of th&/-C curve is somewhat lower than in region the bulk flow, laminar or turbulent, natural or forced, gravi-
I. Inflection of theV-C curve (transition to region Ill is tational instability will destroy an already existing horizontal
accompanied by the appearance of a low-frequency excesfiffusion layer with a positive upward density gradient only
electric noisd 1-3]. Noise amplitude increases with the dis- if the respective Rayleigh number is above a critical value
tance above the threshold and may reach up to a few percetitat is larger than 1000. For an aqueous, 200-thick or
of the appropriate mean value. less diffusion layer of a 0.01 or 0.1 molar NaCl solution the
Steady state passage of an electric current higher than thRayleigh number is 11.6 and 116, respectively, that is at least
limiting one through an ion exchange membrane is coman order of magnitude below the instability threshold. Elec-
monly referred to as overlimiting conductance. The mechatroconvection, in particular, the one driven by nonequilib-
nisms of it and of the accompanying excess electric noiseium electro-osmotic slip at the solution/membrane interface,
remained unclear for a long time. It has been shown concluwas suggested as an alternative mechanism drawing together
sively that no such mechanisms as loss of membrane pernthe overlimiting phenomena at cation exchange membranes
selectivity at high voltage or the appearance of additiona[13-1§.
charge carrierg“water splitting”) are responsible for these  Two types of electroconvection in strong electrolytes may
phenomena at cation-exchange membrddes). be distinguished: bulk electroconvection, due to the action of
the electric field upon the residual space charge of a locally
quasielectroneutral electrolyte with nonuniform concentra-
*Email address: robinst@bgumail.bgu.ac.il tion, and convection induced by electro-osmotic slip of either
"Email address: boris@bgumail.bgu.ac.il equilibrium (first) or nonequilibrium (second kind, dis-
IThis is also true for anion exchange membranes, although thereussed in this paper. Both types of electroconvection may set
the aforementioned overlimiting pattern is obscured by the fact thaon either in a thresholdless manner due to inhomogeneity of
most anion exchange membranes intensely “split water” in themembrane surfacémechanical, such as roughness or con-
course of concentration polarization due to a particular catalyticductive) or with a threshold, through instability of quiescent
surface reactiof6—8§J. electric conduction. Electroconvection of both types has

Concentration polarizatiofCP) is the electrochemical
nickname for a complex of effects related to the formation o
concentration gradients in electrolyte solution adjacent to

1063-651X/2000/6@2)/223814)/$15.00 PRE 62 2238 ©2000 The American Physical Society



PRE 62 ELECTRO-OSMOTICALLY INDUCED CONVECTION ATA. .. 2239

nism of overlimiting conductance versus the bulk electrocon-
vective one.
In our previous publicationgl7,18 we developed theory
of nonequilibrium electro-osmotic slip at a permselective
membrangelectro-osmosis of the second kif2o]). It has
been shown that this slip yields instability of the quiescent
concentration polarization at a homogeneous membrane.
Electroconvection, developing from this instability , results
in destruction of the diffusion layer, causing overlimiting
| fm Il conduction. Not far above the instability threshold, steady
state electroconvective vortices start oscillating in a periodic
manner. Upon further moving away from that threshold,
these oscillations soon become chaotic, resulting in low fre-
quency excess electric noise, typical of the overlimiting con-
ductance. Besides the derivation of the electro-osmotic slip
condition and the linear stability analysis, Rdfs7,18 con-
tained a brief account of preliminary results pertaining to
nonlinear convection at either homogeneous or inhomoge-
FIG. 1. Sketch of a typical dimensionless voltage-current curve'€0US membrane. In this paper we present a systematic ac-
of a cation-exchange membrane. count of the respective results for a homogeneous membrane.
Thus, in largely introductive Sec. Il, besides the formula-
) _ tion of the basic model problem, we outline the derivation of
been invoked, besides the membrane confé%t16 as & he glip condition and recapitulate the main results of the
factor effecting the dendritic pattern formation in elec- jingar stability analysis. In addition to the respective results
trodeposition[19-21] and layering of colloid crystals on iy Ref.[18] we present here the wave number dependence of
electrode surfacef22,23. Study of bulk electroconvective the linear growth rate. In Sec. Ill we present the results per-
instability has been initiated by Grigif24]. In his paper taining to the stationary nonlinear vortex size selection. In
Grigin used the lowest order Galerkin approximation toSec. IV we describe the loss of stability by those steady
study the critical perturbation mode for unrealistic boundaryelectroconvective vortices, resulting in the appearance of
conditions[24,25. The main focus of this pioneering work their periodic, and later, chaotic oscillations and the spectral
was the possibility of bulk electroconvective instability. Gri- properties of their related excess electric noise. Finally, in
gin’s papers were followed by an independent study by BruSec. V, as a possible application, we discuss precipitation of
insma and Alexander in which they investigated the bulkthe onset of overlimiting conductance by a slight periodic
electroconvective instability in a very narrow polarization distortion of the flat membrane surface on the length scale of
cell of finite thickness for galvanostatic conditiong@e]  diffusion layer thickness.
which likely amounted, in terms of concentration polariza-
tion in a flat layer, to consideration of some very particular |I. ELECTRO-OSMOTIC SLIP OF THE SECOND KIND
perturbation mode. A systematic numerical study of linear AND INSTABILITY OF QUIESCENT CONCENTRATION
bulk electroconvective instability in an electric layer flanked POLARIZATION AT A PERMSELECTIVE
by cation-selective surfaces has been carried out for galvano- MEMBRANE

static conditions in Refq.16,27). . . .
So far we know of no efficient numerical solution for The_prototyplt_:al t_wo-(_jlmens_lona_ll model problem f(_)r con-
,sentration polarization in a diffusion layer of a univalent

nonlinear bulk electroconvection, and, thus, we do not kno L lectrolvie adiacent to a permselective membrane under the
whether the aforementioned bulk electroconvective instabil- y a P v u

: . : s - assage of a normal electric current in the dimensionless
ity may actually develop into a major mixing mechanism onP . .
a macroscopicdiffusion layep scale. Based on heuristic en- form reads[17,18,3( (tilded notations are used below for

ergy balance arguments, Bruinsma and Alexander claim iI1|he dl_men5|onal variables, as opposed to their untilded di-
Ref. [26] that it may not. mensionless counterparts

In our recent experiments aimed at distinguishing be- Equations for the diffusion layer {—c<x<e, O<y<1}:
tween the bulk electroconvective and electro-osmotic mecha-

Current density, /

Voltage, V

+ +_ + +

nisms in overlimiting conductance we cast micron to submi- ¢ +PeuV)c"=DV(Vc ' +c Vo), @
cron thick layers of aqueous conductive sol@moss-linked

polyvinylalcoho) on the surface of a cation-exchange mem- ¢, +PguvV)c™=V(Vc™—c Vo), (2)
brane[28]. Usage of this thus modified membrane in con-

centration polarization tests in a thin polarization ¢&2,13 e?Ap=c —c", ®)

showed that immobilization of electrolyte in the vicinity of

the depleted solution/membrane interface resulted in elimi- 1

nation Qf overlimiting _condu_qance. Considering the negli- St —Vp+AeVe+Av, (4)
gible thickness of the immobilized layer compared to that of c

the diffusion layer(200 um in the polarization cell em-

ployed, this indicates in favor of the electro-osmotic mecha- Vu=0. (5)
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The Nernst-Planck equatioii$) and(2) describe convective (2) The Peclet number Pe is defined as
electrodiffusion of cations and anions, respectively. Equation
(3) is the Poisson equation for the electric potential, where
¢t —c~ on the right-hand side is the space charge due to a
local imbalance of ionic concentrations. The Stokes equation ]
(4) is obtained from the full momentum equation by omitting ©f. using Eq.(12),
the nonlinear inertia terms. Finally, E¢p) is the continuity 2

: - : : . . . RT d
equation for an incompressible solution. Spatial variables in Pe= <_) )
Egs. (1)—(5) have been nondimensionalized with the diffu- F | 4mnD_
sion layer thicknes&, whereas,

&)
Pe=| 5 (15)

(16)

As indicated previously30], Pe does not depend ag, L,

iD and for a typical aqueous low molecular electrolyte is of
=—), 6 order unity(more precisely, Pe0.5).
2
L (3) Sc is the Schmidt number defined as
“t
e @ So=—. (17
c0’ D_
~ Here v is the kinematic viscosity of the fluid.
-_c (4) Finally, the relative cationic diffusivitp is defined as
¢ =% (8)
D,
~ D=—, 18
e 5 (18)
P=RT )]

whereD , andD _ are the dimensional cationic and anionic

are, respectively, the dimensionless time, concentrations GHifusivities, respectively.

cations and anions, and the electric potential, viith the Boundary conditions: .

anion diffusivity, ¢, the specifiedbulk) concentration at the y=0 (cation permselective membrane surface
outer edge of the diffusion layeF, the Faraday constan® (c;—c ¢y)y_o=0 (19)
the universal gas constant, afidhe absolute temperature; y Pylly=0="-

andp in Egs.(4) and(5) are the dimensionless velocity vec- cqngition(19) states impermeability for anions of an ideally
tor and pressure, defined as permselective cation exchange membrane

¢ ly=0=p1. (20)

||c:1

v=s =ui+wj, (10
0 This condition, prescribing interface concentration equal to
b that of the fixed charges inside the membrape)( is as-
p (11)  ymptotically valid forp;>1 and amounts to disregarding the

Po co-ion invasion of an ideally permselective membrane and

, : : , the presence of a®(e/\/p;) thick boundary layer on the
with the typical velocityv o and pressure, determined from membrane side of the interface

the force balance in the dimensional version of the momen-
tum equation(4) as

@ly—o=—V. (21)
2
UO:M, (12) This condition, valid for the so called potentiostatic opera-
4wyl tion, specifies at valu® (voltage the potential drop across
the diffusion layer;V is the control parameter in our treat-
1%
po="-, gy MM
vly=0=0. (22

where d is the dielectric constant of the solutigin the o ] .
Gauss systeimand 7 is the dynamic viscosity of the fluid. This is the common nonslip condition.

Below we list and discuss the dimensionless parameters in Y=1 (outer edge of the diffusion layer
the system, Eq41)—(5).

+ —
(1) The dimensionless Debye lengthis defined as c’ly-1=1, 23
(dRT)V2 14 ¢ ly-1=1. (24)
8 = 5 L
2F (7rcg) YL Conditions (23) and (24) specify the unity dimensionless

o o “bulk” concentration in accord with the aforementioned
e lies in the range 0.2 10” *<£?<2x 10", for a realistic  scaling

macroscopic system with 1I6<L(cm)<10 !, 104
<C0(m0|)<1. (P|y:1=0. (25)
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The normalization conditior(25), together with Eq.(21),

specifies an arbitrary constant in the definition of electro-

static potential

uy|y:1:0: (26)

(27)
Conditions(26) and(27) prescribe a vanishing normal veloc-

ity and viscous shear stress at the outer “free” edge of th
diffusion layer.

le:l:O'

When time dependent situations are addressed, the boun

ary value problem, Eqs.1)—(5) and (19—(27), is supple-
mented by a suitable set of initial conditions.

The boundary value problem, Ed4)—(5) and(19)—(27),
possesses a one-dimensional quiescent conduction solut
withv=0, andc™, ¢~, and¢ satisfying the boundary value
problem

(c, +¢cFoy)y=0, (28
(cy —¢ ¢y),=0, (29
e?py=c” —c”, (30
(¢, —¢ ¢y)]y-0=0, (3D
cly-1=1, (32
¢ ly-1=1, (33
¢ ly=0=p1, (34
¢ly=1=0, (35
¢ly=0=—V, (36)
and
P(Y)=3¢5+pc, (37)

wherep, is an arbitrary integration constant.

For quasiequilibrium conditions the solution of the
boundary value problem, Eq$28)—(36), splits into the
“outer” locally electroneutral solution, valid in the “bulk”
of the segment &y<<1, and the “inner” or electric double
layer solution, valid in thes vicinity of the interface aty
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(Inc+¢@)|y—o=Inp;—V. (43

_ def
Herec=c*=c~, and Eq.(43) expresses the continuity of
the electrochemical potential of catiof@mpable of penetrat-
ing the interface ay=0) across the discontinuities of the
electric potential and ionic concentration, modeling the elec-
tric double layer in the outer problem. The outquiescent
concentration polarizatigrsolution is obtained by a straight-
Sorward integration of the boundary value problem, Egs.
9‘_8)—(43), in the form

o(y)= I§y+ 1- '5 (44)
ion B | |
<P(Y)=|n(§)’+ 1- E)’ (45)
where
def
I=(cy+coy) (46)

is the electric current density in the system. Expres$im
yields the current-voltage relation

|=2(1—eV=InPy), (47

From Eq.(47), whenV—o, | —1'"M=2 and, simultaneously,

by Eqg.(44), c(0)—0. This is the key feature in the classical
picture of concentration polarization—saturation of the cur-
rent density toward the limiting value, resulting from the
vanishing interface electrolyte concentration at the cathode.
In fact, currents much greater than the limiting one are
readily passed through virtually ideally permselective cation-
exchange membrandsverlimiting conductance mentioned
in Sec. ). Search for a mechanism for this and the related
occurrence of the excess electric noise, provided the main
motivation for the study of electroconvection in strong elec-
trolytes in general15-18,31-3%and the present study, in
particular.

In order to investigate the stability of the quiescent con-
centration polarization solution, Eq&14)—(47), one has to
allow for lateral motions. In this case too the problem splits
into that for locally quasielectroneutral bulk and the bound-
ary (electric doublg layer at the membrane/solution inter-

=0 [17,18,30. The inner and outer solutions are connectedface. Equations describing the ionic transfer and fluid flow in
through the standard procedures of matched asymptotic efhe bulk read 15]
pansions. The outer leading order solution is that to the

quasielectroneutral boundary value problem it PQR_V)€= DV(Vc+cVe), (48)
(cytCey)y=0, 0<y<L, (39 c+PguV)c=V(Vc—cVe), (49)
(cy—Cey)y=0, (39) T
B S~ ~VpHAeVetAy, (50)
c(l)=1, (40
_ Vu=0, (51)
¢(1)=0, (41) -
. whereas the boundary layer analysis provides, in addition to
(Cy—Ccpy)|y=0=0, (42 boundary conditions, Eq$42) and (43), an expression for
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electro-osmaotic slip, that is the tangential fluid velocity at theThat is, the factor at- ¢, (electro-osmotic factgrtends to a
outer edge of the electric double layer. maximal upper value upon the increasesaihegative. This

For electro-osmotic slip at a conductive permselective instands in contrast with the respective prediction of the
terface two fundamentally different regimes should be distinHelmholtz-Smoluchowski formula, E@56), and is a direct
guished in accordance with the magnitude of the electric cureonsequence of polarization of the electric double layer at a
rent through the interface. permselective interface.

The first (quasiequilibrium electro-osmosis, or electro-  Hydrodynamic stability of the quiescent concentration po-
osmosis of the first kind, following terminology of Dukhin larization with a limiting quasi-equilibrium electro-osmotic
[29]) pertains to currents below the limiting value. For suchslip, Eq.(58), was studied in Ref.36]. It was concluded that
currents the diffuse part of the electric double layer preserveslectro-osmotic instability of the first kind, although possible
its common quasiequilibrium structure essentially identicalin principle near the limiting current, was unfeasible for any
with that for zero current. Theory of quasiequilibrium realistic low molecular aqueous electrolyte. This conclusion
electro-osmosis at a permselective interface was developddllowed from the fact that an electro-osmotic factor at least
by Dukhin[35]. An essential part of this theory is accounting one order of magnitude higher than the limiting value 4 In 2
for polarization of the electric double layer by the appliedis required for this type of instability to occur. This conclu-
tangential electric field resulting, in particular, in major lat- sion is valid as long as the system, in particular the electric
eral pressure drops in the double layer due the lateral variadouble layer, remains at quasiequilibrium. Namely, this
tion of the Maxwell stresses. This results, for the tangentiateases being the case when the current approaches the lim-

velocity u in the double layer, in the equation of the form jiing value. We already saw that in this case-0 and ¢
— —oo, which makes Eq(53) formally unsuitable for calcu-
— (@) %]+ +u,,=0 (52 i i ;
2L{Pz) IxT PxPzzT Uzz= Y, lation of ¢ in the double electric layer and, thus, through Eq.
h B s the bound | di F (52), for calculation of electro-osmotic velocity;. This re-
where z=y/e is the boundary layer coordinate. For @ flects a fundamental structural change which occurs in the

quaisiequilibrium boundary layer, potential(x,z) in Eq. svstem as it moves awav from guasiequilibrium ugon
(52) is substituted from the solution of the Poisson-_)flnm y a a plo

Boltzmann equation Generally, quasiequilibrium is typified by the division of

= “ox0)_ am ot 2(x0) the system into a locally quasielectroneutral bulk and a qua-
@,7~Cc(x,0)(e?" ¥V —e ) (53 siequilibrium boundary layefdiffuse double electriclayer.
This picture breaks down updn-1"" as reflected, in par-
ticular, in the inconsistency of the local electroneutrality ap-
proximation, which appears in the basic concentration polar-
ization solution Egs.(44)—(47) in this limit. Indeed,
according to Eq(45)

of the form

o e+ 1+ (e52— 1)e—ZV2€(x,0)
o(X,2)=@(x,00+2In

e§/2+ 1— (e§/2_ 1)e—2\/2?(x,0) '

®4 12 .
o , eyy(0)=—+ z—®, when|—]"M=2
Herec(x,0), ¢(x,0) are, respectively, the electrolyte concen- 4 1— |_
tration and the electric potential at the outer edge of the 2

electric double layer and
This implies that for any finite, however small, setting the

s(x)=¢(x,0— ¢(x,0) (55 left-hand side of the Poisson equatit8) equal to zero be-
comes inconsistent. This was the motivation behind the study
is the dimensionless potential. of the space charge of the nonequilibrium electric double

Integration of Eq(52) with Eq. (54) yields for the electro- layer, which develops in the course of concentration polar-
osmotic slip velocity, instead of the common Helmholtz- ization when the interface concentration approaches zero
Smoluchowski formula and, accordingly, the local Debye length tends to infinity

[37]. This study essentially consisted of a numerical solution
Ug= g;x (56) of the one-dimensional model problem, E¢28)—(37).
In Figs. 2a) and Zb) we present schematically the ionic
valid for an impermeable interface, the expression concentrations and space charge density profiles obtained in
Ref. [37] (and in a number of studies that followed,
_c c, 1+e? [30,38,39) for a sequence of applied voltaye
o+ =|—4=In 5 (57 The respective results may be summarized as follows. For
¢ ¢ 0<V=0(1) (I<I'M), local electroneutrality holds in the
o , , entire system except for the boundary layer of the order of
The peculiarity of Eq(57) is that, for an ideally permselec- cknesse at the left edge of the region. In the respective
tive ca’uon;e&hange membran_e rﬂamta_med at a constant P@iectroneutral region a linear ionic concentration profile
tential (Inc+e=const, that is,c,/c=—¢,) ands——=,  holds in accordance with E¢44). The maximal slope of the
Eg. (57) yields concentration profile in these conditions ihich corre-
. sponds td =1'"M=2). This picture remains essentially valid
Us=—(41In2)g,. (58  up to V=0(|Ine) (I=<I"). For O(|Ine))<V<O(e™Y (I

Us=s
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Accurate analysis of nonequilibrium electro-osmotic slip
at a flat permselective membrane with an applied voltdge
[V>O0(|Inel)] was carried out in Ref.18], resulting in the
expression

Us=—=V . (59)
W y=0

Derivation of Eq.(59) employed the asymptotic theory of
the nonequilibrium double electric layer, previously devel-
oped by Listovnichy{41], and amounted to carrying out an
analysis similar to that outlined above for quasiequilibrium
electro-osmosis. An account for polarization proved to be the
more necessary here, since a large potential drop between the
membrane surface and the bulk was concerned: that is,
namely those conditions for which saturation of the electro-
osmotic factor occurred for a quasiequilibrium electro-
osmotic slip. For obtaining a better physical insight into ex-
pression(59), it is worth noting thatc,|,—, is one half the
local current density through the membrane, which is the
main local characteristic controlling the thickness of the non-
equilibrium double electric layer and, thus, the electric po-
tential in it. Noticeable also is the complete absence of the
electric field from Eq.(59). As shown below this greatly
simplifies the computations of the resulting bulk flow.

0.06 | Summarizing, the relevant problem for time dependent
ion transfer in the quasielectroneutral diffusion layeroe
p=C.-C+ <x<®,0<y<1} at a permselective solid/liquid interface
0.04 reads, omitting overbars,
1
(1+5 (ci+PevVe)=2Ac, (60)
0.02
—v=ui+wj, (61
0.00 1 _
0.0 02 04 Y 06 0.8 10 Se v T VptAy, (62)
FIG. 2. Sketch of the dimensionless ionic concentrati@hand
space charge densitp) profiles in the diffusion layer and nonequi- Vu=0, (63)
librium electric double layerg=10"2).
~|'m), the following three regions may be distinguished cly-1=1, (64)
(from right to lef).The quasielectroneutral “bulk” region
has a linear concentration profile with the slope of approxi- uyly-1=0, (65)
mately 1. This region borders on the left with the extended
diffuse space charge region of a width betwe&*%) and w|,_;=0, (66)
O(1), followed by the quasiequilibriun®(e) thick, bound-
ary layer at the left edge. Upon a further increase of voltage y=0:
up to O(e 1) the extended space charge region reaches a
finite sizeO(1) and so does the current increment over the cly=0=0, (67)
limiting value [0<|—1'"m=0(1)].
The main, and perhaps the only importance of this obser- W|y—o=0, (68)
vation of development in the course of concentration polar-
ization of a nonequilibrium electric double layer with the J’c
extended space charge region, lays in its contribution to the 1 ,dxay
discovery of the so called electrokinetic phenomena of the y=0="3gV oo (69)
second kind by Dukhin and his colleaguist,29,4Q (see 7y

also references if29]).
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We reiterate that boundary conditions E(&7)—(69), are le:o =0, (85)
specific for electro-osmosis of the second kind, whereas Eqgs. ’
(64)—(66) are the standard boundary conditions at the outer w’|,_,=0, (86)
edge of the diffusion layer, corresponding to a specified -
(unity) “bulk” concentration, vanishing normal velocity and W'ly_o= —ak?¢'(0). (87)

no shear. The Coulombic terdeV¢ [compare with Eq.
(4)] has been omitted from E@62) due to itsO(In?V/V?) et st

smallness for electro-osmosis of the second Kit#l. Herea=1V2 b=[Pe(D+1)/2D]; ¢ andw are the Fourier
With c(x,y) and v determined from Eqs(60)—(69), s ’

: = . o transforms
¢(x,y) is founda posteriorifrom the equation of continuity
of the electric current o
= e®ci(x,y)dx, 88
V(cVe)=0 70 &(y) ﬁw 1(X,y) (88)
with boundary conditions o
w( )=f e'wy(x,y)dx (89)
o(x,1)=0, (72) VTR
Coy(x,0)=cy(x,0), (72)  of the spatial factor;, w; in the c;(X,y,t), Wy(X,y,t)
at y=0,1. [Once more, conditiort72) stands for imperme- representation
ability of the ideally permselective cation exchange mem- = N
brane for anions, whereas the normalization conditioh Ci(x,y,)=Cy(x,y)e, (90)
specifies the arbitrary constant in the definition of the electric _
potential] wWi(X,y,t) =wy(x,y)eM, (9D

The boundary value problem, Eq$0)—(69), possesses a
trivial “limiting” quiescent concentration polarization solu- wherek is the wave number and is the spectral parameter.

tion [see Eq(44) with | =1"m] Recall that\ with a positive real part implies instability of
the quiescent limiting concentration polarization solution,
Co(Y) =Y, (73 Egs.(73) and(74).
) ) Solution of boundary value problem, Eq&1)—(87),
Vo= Ul +Wo =0. (74 yields for\ the algebraic equation
Below we outline the linear stability analysis of this solution * *
(see Refs.[17,1§ for detaily. The respective linearized — — )\_ - MCOth)\lekcothk_ M,
problem for the perturbations(x,y,t) and vy=uyi+w,j PeCsinhk  Sc-1 Sc-1
reads (92
where
Cyt PewlzmAcl, (75
def def D+1
1 N =k +)\/SC, )\1: V)\W'sz
§:AW1t =A%wy, (76)
and
Wqly—0=0, (77)
k?a sinh\*
le|y:0: %Vzclyxx|y:01 (78) C=- - - . (93
k coshk sinhA* —\* cosh\* sinhk
le|y=l: 0, (79)

For a and b in the relevant range (Pel, 0.1<D<10, 0
Wiyyly=1=0. (800  <V?<10%, all roots of Eq.(92) are real. Substitution of

) ) ) =0 into Eq.(92) yields the marginal stability curve in the
Equations(75)—(80) yield a spectral problem in the form form

D+1
——— Né+tbw=¢"—K%¢, O<y<l1, (81 1 . PgD+1 sinhk coshk—k def
75 y 1,Pe0+ —f(K),
8 2D sinhk coshk + k — 2k? cothk
A A (94)
4)_ 2 " 4, —
w 2k +SCW+(k +SC)W 0, (82

(3V[PeD+1)/2D]>f(k) corresponds to instability We
£(0)=0, (83)  point out the monotonic decrease (k) with increasingk

towards the “critical” value 4, and, accordingly, the mono-
&(1)=0, (84)  tonic decrease of the threshold value\bfowards the limit
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FIG. 3. Marginal stability curve for nonequilibrium electro-
osmotic instability ¥: dimensionless voltagek: dimensionless
wave member

-

0
/

@

V=8D/[(D+1)Pdg. In Fig. 3 we present the marginal sta-

)

bility curve as defined by Eq94) in the V/k plane for Pe ' ] o 1
=0.5 andD=1. For linear growth rata Eq. (92) yields for
largek Y
FIG. 4. Steady-state streamlines for boxes of different &ire
(b SC)1’3 mensionless H=5 (a), H=10 (b), H=20 (c).
A= k>3+0(k*3). (95)

The fact that according to linear stability analysis the per{oint out that the flow induced by electro-osmosis of the
turbation mode with infinitesimal wavelength is most un-second kind is the only type of nonlinear electroconvection
stable suggests the need for a nonlinear wave number selege have been able to investigate numerically so far.
tion principle. Some information in this respect is provided The systen{Egs.(60)—(69)] was solved by finite differ-
by the nonlinear convection computations described in Seances in the domain Ox<H, 0<y<1 with periodic
[ll. As for a possible physical interpretation of this instability boundary conditions at=0,H for variousH andV. Thus, in
let us note that, taking into account E¢46) and (72), the  Figs. 4a)—4(c) we present the calculated families of steady
slip condition, Eq«(59), may be rewritten as state flow streamlines fov=V+1 andH=5, 10, and 20,

respectively. The qualitative image emerging from the calcu-
1 lations for differentH may be summarized as follows. Vor-
Ug=— §v2|_7, (96)  tices form in pairs; their size depends Bina maximal size
of H exists for a given number of vortex pairs per box; upon

wherel is the local transversal current density and subscripfl® increase off above this size, an additional vortex pair
7 denotes differentiation in the lateral direction. For aaPPears; the maximal vortex size, corresponding to the maxi-
“seed” circulational fluctuation at the wall, the current den- M@l box size, roughly matches the size of vortices that
sity drops in the direction of the circulation velocity which €merge for an infinite layet{—); this size, that is the half
results, according to the minus sign in Eg6), in a positive ~ Width of the periodicity cell formed in an infinite layer, is of
feedback. Fol below a certain threshold, diffusional damp- order of the diffusion layer width; this reflects the general

ing dominates. nonlinear mode selection pattern in this system as illustrated
in Figs. 5—-11. In these figures we present the time evolution
lIl. NONLINEAR STEADY STATE VORTEX of a family of flow streamlines starting from a short-wave
SIZE SELECTION periodic disturbancéFigs. 5a)-10@)] for V=V+1, H=2

in six sequent time moments, in parallel with the respective
In this section we present some results of a numericaFourier spectrum of the maximum of the stream function
solution of the full nonlinear system, Eq&0)—(69). We  ®(x,y) in the normal directiory
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FIG. 5. Nonlinear mode selection: vortex evolution from the FIG. 6. Same as Fig. 5=10"2.

initial shortwave disturbance,=0 (t is dimensionless time (a)
flow streamlines;(b) Fourier spectrum of the stream function’s

maximum. maximum of the Fourier amplitude appearskat8 [Figs.
6(a) and Gb)]. Eventually, these small vortices break up
2 , through fusing and form four pairs of larger vortices with a
lﬂ(k)=‘ J'o ff}fgf](‘b(X,Y))e”k'XdX (97 longer lifetime[see Fig. 7a)]. Accordingly, the Fourier am-
yelo,

plitude maximum shifts t&=4 with the short-wave modes
[Figs. §b)—10b)]. The emerging picture may be summa- r_emaining at a very onv but fin_ite amplitud€ig. 7(b)]. As

rized as follows. We begin with a very small periodic unhar-time goes on, these eight vortices become unstable too and
monic short—wave initial disturbanddig. 5@ and Fb)] start transforming into two pairs of still larger stable steady-
(k=8, eight vortex paifsand trace its evolution subject to State vorticegFigs. 8a) and 9a)]. In the Fourier spectrum
perturbation by a minor numerical noise. At the initial stagethis results in the shift of the amplitude maximum frdm

the short-wave modes grow faster and dominate and, thus;4 to k=2 [Figs. 8b) and 9b)]. The final four stable
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FIG. 7. Same as Fig. 5=1. FIG. 8. Same as Fig. §=3.
steady-state vortices and their Fourier spectrum are presentstite occurred through a nonmonotonic, and , clos¥.to
in Figs. 1Ga) and 1@b). decaying oscillatory readjustment of the size and shape of
viscous vortices, manifesting itself in decaying oscillations
IV. VORTEX OSCILLATIONS AND EXCESS of the electric current through the interface. In a narrow volt-
ELECTRIC NOISE age range above the threshold the system approached the

state of small amplitude periodic oscillations about a time
The solution of the problem, Eq$60)—(69), further on  independent average. Above this range, the attractor became
from the first instability thresholdV disclosed another chaotic. This is illustrated in Figs. 1d—-11(c) by presenting
thresholdV,,, depending orH (V,=V+1.1 for the “infi-  the calculated average current density
nite” layer H=20) above which steady-state vortices be-
came unstable. Namely, upon an incremental increase of T/ :E : d
; ” I(t) (Coy)ly=odx (98)
voltage in the rang& <V<V,, transition to a new steady HJo
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FIG. 9. Same as Fig. 5=3.5.

versus time for three sequent values of voltaye=(/+1,
V+1.1, V+1.2) for the “infinite” layer (H=20). Let us
note that due to periodic boundary conditionxatO,H the

average current densith_(t) does not depend op. More-
over, due to Eq(72)

— 2 (H
()= ﬁf Cyly—odx. (99

0

For a steady state, integration of E§O) over the domain
{0<x<H,0<y<1} yields, using Eq(63), periodic bound-
ary conditions ak=0,H and Eqs(66) and(68) aty=0,1
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FIG. 10. Same as Fig. 5=20.
_ 2 (H
I(t)= ﬁfo Cy|y:1 dx. (100

Egs. (99 and (100 provide a means for calculation of the
electric current without computing the electric potental
For a periodic or chaotic attractor, EGLO0O) holds for the
space-time averaged current density, defined as



ELECTRO-OSMOTICALLY INDU

(@)

0.98 L L

(=

1.068

1.064

1.06

1.056

=~

1.052

1.048

1.044 L L

300

1.08

1.07

1.06

1.0

bl |

1.04

1.03

1.02 L L

0 100 t 200 300

FIG. 11. Average dimensionless current density evolution to-

wards the attractora) steady statey=V+1; (b) periodic oscilla-
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In Fig. 12 we presen?versus voltage curve for the “infi-
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FIG. 12. Average dimensionless overlimiting current/voltage
curve for an infinite flat membrane.
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FIG. 13. Membrane noise power spectrum.

nite” layer. We note the nearly linear shape of the overlim-
iting part of this curve.

Finally, in Fig. 13 we present the calculated current noise
power spectrunw(k). The calculated noise power law ex-
ponents,x=—1 for low frequencies and= —4 for high
frequencies, are among those encountered in noise measure-
ments at cation exchange membrapgg).

V. HASTENING THE ONSET OF OVERLIMITING
CONDUCTANCE

Hastening the onset of overlimiting conductance is impor-
tant for improving the efficiency of electrodialysis. In our
previous publicatiorf17] we studied the effect of nonlinear
interaction of small-scale electroconvective eddies due to
electric inhomogeneity of membrane surface and its possible

16

1.4
Wavy membrane at y=1+0.1sin(2nx),

i fm

12

Flat membra‘ne

1‘ | L
0 12

FIG. 14. Comparison of voltage-current curve for a “wavy”
membrane with that for a flat one.
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FIG. 15. Dimensionless concentration level lifgsand stream- FIG. 16. Same as Fig. 15 for=8.65.

lines (b) at a “wavy” membraneV=28.15. o ) ) )
on the overall ionic transport across the diffusion layer until

role upon mixing in the diffusion layer and the onset of theVoltage reaches some threshold-like value upon which the
overlimiting conduction. In this section, we discuss precipi-OVerlimiting conductance sets on. Shape of the respective
tation of the latter by a slight periodic distortion of the flat voltage-current curve is practhally |§jent|cal to that for a flat

membrane surface on the length scale of the width of théheémbrane, whereas a 10% distortion of the flat membrane
diffusion layer. The possibility of an early onset of overlim- Surface results in a 30% precipitation of the onset of over-
iting conductance has already been conjectured by Dukhiimiting conductance and a respective increase of the current

and Mischuck in their pioneering paper on electroosmosis ofompared to those for a flat membrafsee Fig. 14, slight
the second kind14]. increase of the limiting current at a “wavy” membrane is

We solved numerically the version of the full nonlinear due to the increase of surface area compared to the flat mem-
problem, Eqs(60)—(69), for a periodically distorted mem- brane. _ o
brane surface In Figs. 15 and 16 we illustrate the changes occurring in

the diffusion layer with the increase of voltage by presenting
y=1+0.1sin(2mx), (1020  the level lines of concentration and the stream lines\for
=8.15 andv=28.65, respectively. Worth noting is the devel-
which required reformulation of boundary conditions, Eqs.opment of a low concentration zone near the concave parts of
(67)—(69) for a nonflat boundary. Nonflatness of membranethe membrane surface. For sufficiently high voltag&s (
surface yields a thresholdless appearance of the vortex flow 8.65), width of this zone reaches half of that of the diffu-
at low voltages. This convection has, however, little effectsion layer[Fig. 16a)].
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