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Electro-osmotically induced convection at a permselective membrane

I. Rubinstein* and B. Zaltzman†

Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 84990, Israel
~Received 18 January 2000!

The paper is concerned with convection at an ion exchange electrodialysis membrane induced by nonequi-
librium electro-osmosis in the course of concentration polarization under the passage of electric current
through the membrane. Derivation of nonequilibrium electro-osmotic slip condition is recapitulated along with
the linear stability analysis of quiescent electrodiffusion through a flat ion exchange membrane. Results of
numerical calculation for nonlinear steady state convection, developing from the respective instability, are
reported along with those for a slightly wavy membrane. Besides these results, we report those of time
dependent calculations for periodic and chaotic oscillations, resulting from instability of the respective steady
state flows, and also the results of recent experiments with modified membranes. These latter rule in favor of
electro-osmotic versus bulk electroconvective origin of overlimiting conductance through ion exchange
membranes.

PACS number~s!: 66.10.2x, 82.45.1z, 47.20.2k
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I. INTRODUCTION

Concentration polarization~CP! is the electrochemica
nickname for a complex of effects related to the formation
concentration gradients in electrolyte solution adjacent t
permselective~charge selective! solid/liquid interface upon
the passage of an electric current. This is, in particula
basic element of charge transfer across ion exchange
trodialysis membranes. The specific aspect of CP we add
here concerns the stationary voltage/current (V-C) curves of
highly permselective cation exchange membranes wh
typically are of general form depicted in Fig. 1. The follow
ing three regions are distinguishable in such a curve. The
current ohmic region I is followed by a plateau~region II, the
‘‘limiting current’’ ! of a much lower slope. Inflection of th
V-C curve at the plateau is followed by region III, in whic
the slope of theV-C curve is somewhat lower than in regio
I. Inflection of the V-C curve ~transition to region III! is
accompanied by the appearance of a low-frequency ex
electric noise@1–3#. Noise amplitude increases with the di
tance above the threshold and may reach up to a few per
of the appropriate mean value.

Steady state passage of an electric current higher than
limiting one through an ion exchange membrane is co
monly referred to as overlimiting conductance. The mec
nisms of it and of the accompanying excess electric no
remained unclear for a long time. It has been shown con
sively that no such mechanisms as loss of membrane p
selectivity at high voltage or the appearance of additio
charge carriers~‘‘water splitting’’ ! are responsible for thes
phenomena at cation-exchange membranes@4–8#.1

*Email address: robinst@bgumail.bgu.ac.il
†Email address: boris@bgumail.bgu.ac.il
1This is also true for anion exchange membranes, although t

the aforementioned overlimiting pattern is obscured by the fact
most anion exchange membranes intensely ‘‘split water’’ in
course of concentration polarization due to a particular catal
surface reaction@6–8#.
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Eventually, a fair amount of indications have been ac
mulated, suggesting that the overlimiting behavior of the
exchange membranes has to do with some kind of convec
mixing that develops spontaneously in the depleted diffus
layer at the advanced stage of concentration polariza
@4,9–11#. This has been finally confirmed by a direct expe
mental observation: if the depleted diffusion layer is imm
bilized by a gel, a plateau is reached at saturation, and
excess electric noise disappears@12#.

It was suggested that gravitational convection, brou
about by the density gradients due to concentration polar
tion, may destroy the unstirred layer@9,10#. It should how-
ever be remembered that gravitational instability of a lami
sublayer at a smooth solid/liquid interface in a well mix
bulk flow may occur only upon the fulfillment of quite gen
eral hydrodynamic conditions. Thus, whatever the nature
the bulk flow, laminar or turbulent, natural or forced, grav
tational instability will destroy an already existing horizont
diffusion layer with a positive upward density gradient on
if the respective Rayleigh number is above a critical va
that is larger than 1000. For an aqueous, 200-mm thick or
less diffusion layer of a 0.01 or 0.1 molar NaCl solution t
Rayleigh number is 11.6 and 116, respectively, that is at le
an order of magnitude below the instability threshold. Ele
troconvection, in particular, the one driven by nonequil
rium electro-osmotic slip at the solution/membrane interfa
was suggested as an alternative mechanism drawing tog
the overlimiting phenomena at cation exchange membra
@13–18#.

Two types of electroconvection in strong electrolytes m
be distinguished: bulk electroconvection, due to the action
the electric field upon the residual space charge of a loc
quasielectroneutral electrolyte with nonuniform concent
tion, and convection induced by electro-osmotic slip of eith
equilibrium ~first! or nonequilibrium ~second! kind, dis-
cussed in this paper. Both types of electroconvection may
on either in a thresholdless manner due to inhomogeneit
membrane surface~mechanical, such as roughness or co
ductive! or with a threshold, through instability of quiesce
electric conduction. Electroconvection of both types h
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been invoked, besides the membrane context@15,16# as a
factor effecting the dendritic pattern formation in ele
trodeposition@19–21# and layering of colloid crystals on
electrode surfaces@22,23#. Study of bulk electroconvective
instability has been initiated by Grigin@24#. In his paper
Grigin used the lowest order Galerkin approximation
study the critical perturbation mode for unrealistic bound
conditions@24,25#. The main focus of this pioneering wor
was the possibility of bulk electroconvective instability. G
gin’s papers were followed by an independent study by B
insma and Alexander in which they investigated the b
electroconvective instability in a very narrow polarizatio
cell of finite thickness for galvanostatic conditions@26#
which likely amounted, in terms of concentration polariz
tion in a flat layer, to consideration of some very particu
perturbation mode. A systematic numerical study of line
bulk electroconvective instability in an electric layer flank
by cation-selective surfaces has been carried out for galv
static conditions in Refs.@16,27#.

So far we know of no efficient numerical solution fo
nonlinear bulk electroconvection, and, thus, we do not kn
whether the aforementioned bulk electroconvective insta
ity may actually develop into a major mixing mechanism
a macroscopic~diffusion layer! scale. Based on heuristic en
ergy balance arguments, Bruinsma and Alexander claim
Ref. @26# that it may not.

In our recent experiments aimed at distinguishing
tween the bulk electroconvective and electro-osmotic mec
nisms in overlimiting conductance we cast micron to sub
cron thick layers of aqueous conductive solid~cross-linked
polyvinylalcohol! on the surface of a cation-exchange me
brane@28#. Usage of this thus modified membrane in co
centration polarization tests in a thin polarization cell@12,13#
showed that immobilization of electrolyte in the vicinity o
the depleted solution/membrane interface resulted in el
nation of overlimiting conductance. Considering the neg
gible thickness of the immobilized layer compared to that
the diffusion layer~200 mm in the polarization cell em-
ployed!, this indicates in favor of the electro-osmotic mech

FIG. 1. Sketch of a typical dimensionless voltage-current cu
of a cation-exchange membrane.
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nism of overlimiting conductance versus the bulk electroc
vective one.

In our previous publications@17,18# we developed theory
of nonequilibrium electro-osmotic slip at a permselecti
membrane~electro-osmosis of the second kind@29#!. It has
been shown that this slip yields instability of the quiesce
concentration polarization at a homogeneous membra
Electroconvection, developing from this instability , resu
in destruction of the diffusion layer, causing overlimitin
conduction. Not far above the instability threshold, stea
state electroconvective vortices start oscillating in a perio
manner. Upon further moving away from that thresho
these oscillations soon become chaotic, resulting in low
quency excess electric noise, typical of the overlimiting co
ductance. Besides the derivation of the electro-osmotic
condition and the linear stability analysis, Refs.@17,18# con-
tained a brief account of preliminary results pertaining
nonlinear convection at either homogeneous or inhomo
neous membrane. In this paper we present a systematic
count of the respective results for a homogeneous membr

Thus, in largely introductive Sec. II, besides the formu
tion of the basic model problem, we outline the derivation
the slip condition and recapitulate the main results of
linear stability analysis. In addition to the respective resu
in Ref. @18# we present here the wave number dependenc
the linear growth rate. In Sec. III we present the results p
taining to the stationary nonlinear vortex size selection.
Sec. IV we describe the loss of stability by those stea
electroconvective vortices, resulting in the appearance
their periodic, and later, chaotic oscillations and the spec
properties of their related excess electric noise. Finally,
Sec. V, as a possible application, we discuss precipitatio
the onset of overlimiting conductance by a slight period
distortion of the flat membrane surface on the length scal
diffusion layer thickness.

II. ELECTRO-OSMOTIC SLIP OF THE SECOND KIND
AND INSTABILITY OF QUIESCENT CONCENTRATION

POLARIZATION AT A PERMSELECTIVE
MEMBRANE

The prototypical two-dimensional model problem for co
centration polarization in a diffusion layer of a univale
electrolyte adjacent to a permselective membrane under
passage of a normal electric current in the dimension
form reads@17,18,30# ~tilded notations are used below fo
the dimensional variables, as opposed to their untilded
mensionless counterparts!:

Equations for the diffusion layer $2`,x,`, 0,y,1%:

ct
11Pe~v¹!c15D¹~¹c11c1¹w!, ~1!

ct
21Pe~v¹!c25¹~¹c22c2¹w!, ~2!

«2Dw5c22c1, ~3!

1

Sc
v t52¹p1Dw¹w1Dv, ~4!

¹v50. ~5!

e
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The Nernst-Planck equations~1! and~2! describe convective
electrodiffusion of cations and anions, respectively. Equa
~3! is the Poisson equation for the electric potential, wh
c12c2 on the right-hand side is the space charge due
local imbalance of ionic concentrations. The Stokes equa
~4! is obtained from the full momentum equation by omittin
the nonlinear inertia terms. Finally, Eq.~5! is the continuity
equation for an incompressible solution. Spatial variables
Eqs. ~1!–~5! have been nondimensionalized with the diff
sion layer thicknessL, whereas,

t5
t̃ D2

L2
, ~6!

c15
c̃1

c0
, ~7!

c25
c̃2

c0
, ~8!

w5
Fw̃

RT
, ~9!

are, respectively, the dimensionless time, concentration
cations and anions, and the electric potential, withD2 the
anion diffusivity,c0 the specified~bulk! concentration at the
outer edge of the diffusion layer,F the Faraday constant,R
the universal gas constant, andT the absolute temperature;v
andp in Eqs.~4! and~5! are the dimensionless velocity ve
tor and pressure, defined as

v5
ṽ

v0
5ui 1wj , ~10!

p5
p̃

p0
, ~11!

with the typical velocityv0 and pressurep0 determined from
the force balance in the dimensional version of the mom
tum equation~4! as

v05
d~RT/F !2

4phL
, ~12!

p05
hv0

L
, ~13!

where d is the dielectric constant of the solution~in the
Gauss system! and h is the dynamic viscosity of the fluid
Below we list and discuss the dimensionless parameter
the system, Eqs.~1!–~5!.

~1! The dimensionless Debye length« is defined as

«5
~dRT!1/2

2F~pc0!1/2L
, ~14!

«2 lies in the range 0.2310212,«2,231025, for a realistic
macroscopic system with 1024,L(cm),1021, 1024

,c0(mol),1.
n
e
a
n

in

of

-

in

~2! The Peclet number Pe is defined as

Pe5S v0L

D2
D ~15!

or, using Eq.~12!,

Pe5S RT

F D 2 d

4phD2
. ~16!

As indicated previously@30#, Pe does not depend onc0 , L,
and for a typical aqueous low molecular electrolyte is
order unity~more precisely, Pe.0.5).

~3! Sc is the Schmidt number defined as

Sc5
n

D2
. ~17!

Heren is the kinematic viscosity of the fluid.
~4! Finally, the relative cationic diffusivityD is defined as

D5
D1

D2
, ~18!

whereD1 andD2 are the dimensional cationic and anion
diffusivities, respectively.

Boundary conditions:
y50 ~cation permselective membrane surface!

~cy
22c2wy!uy5050. ~19!

Condition~19! states impermeability for anions of an ideal
permselective cation exchange membrane

c1uy505p1 . ~20!

This condition, prescribing interface concentration equal
that of the fixed charges inside the membrane (p1), is as-
ymptotically valid forp1@1 and amounts to disregarding th
co-ion invasion of an ideally permselective membrane a
the presence of anO(«/Ap1) thick boundary layer on the
membrane side of the interface

wuy5052V. ~21!

This condition, valid for the so called potentiostatic ope
tion, specifies at valueV ~voltage! the potential drop acros
the diffusion layer;V is the control parameter in our trea
ment

vuy5050. ~22!

This is the common nonslip condition.
y51 ~outer edge of the diffusion layer!:

c1uy5151, ~23!

c2uy5151. ~24!

Conditions ~23! and ~24! specify the unity dimensionles
‘‘bulk’’ concentration in accord with the aforementione
scaling

wuy5150. ~25!
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The normalization condition~25!, together with Eq.~21!,
specifies an arbitrary constant in the definition of elect
static potential

uyuy5150, ~26!

wuy5150. ~27!

Conditions~26! and~27! prescribe a vanishing normal veloc
ity and viscous shear stress at the outer ‘‘free’’ edge of
diffusion layer.

When time dependent situations are addressed, the bo
ary value problem, Eqs.~1!–~5! and ~19!–~27!, is supple-
mented by a suitable set of initial conditions.

The boundary value problem, Eqs.~1!–~5! and~19!–~27!,
possesses a one-dimensional quiescent conduction sol
with v50, andc1, c2, andw satisfying the boundary valu
problem

~cy
11c1wy!y50, ~28!

~cy
22c2wy!y50, ~29!

«2wyy5c22c1, ~30!

~cy
22c2wy!uy5050, ~31!

c1uy5151, ~32!

c2uy5151, ~33!

c1uy505p1 , ~34!

wuy5150, ~35!

wuy5052V, ~36!

and

p~y!5 1
2 wy

21pc , ~37!

wherepc is an arbitrary integration constant.
For quasiequilibrium conditions the solution of th

boundary value problem, Eqs.~28!–~36!, splits into the
‘‘outer’’ locally electroneutral solution, valid in the ‘‘bulk’’
of the segment 0,y,1, and the ‘‘inner’’ or electric double
layer solution, valid in the« vicinity of the interface aty
50 @17,18,30#. The inner and outer solutions are connec
through the standard procedures of matched asymptotic
pansions. The outer leading order solution is that to
quasielectroneutral boundary value problem

~ c̄y1 c̄wy!y50, 0,y,1, ~38!

~ c̄y2 c̄wy!y50, ~39!

c̄~1!51, ~40!

w̄~1!50, ~41!

~ c̄y2cw̄y!uy5050, ~42!
-

e

nd-

ion

d
x-
e

~ ln c̄1w̄ !uy505 ln p12V. ~43!

Here c̄5
def

c15c2, and Eq.~43! expresses the continuity o
the electrochemical potential of cations~capable of penetrat
ing the interface aty50) across the discontinuities of th
electric potential and ionic concentration, modeling the el
tric double layer in the outer problem. The outer~quiescent
concentration polarization! solution is obtained by a straight
forward integration of the boundary value problem, Eq
~38!–~43!, in the form

c̄~y!5
I

2
y112

I

2
, ~44!

w̄~y!5 lnS I

2
y112

I

2D , ~45!

where

I 5
def

~ c̄y1 c̄wy! ~46!

is the electric current density in the system. Expression~45!
yields the current-voltage relation

I 52~12e~V2 lnp1!. ~47!

From Eq.~47!, whenV→`, I→I lim52 and, simultaneously
by Eq.~44!, c̄(0)→0. This is the key feature in the classic
picture of concentration polarization—saturation of the c
rent density toward the limiting value, resulting from th
vanishing interface electrolyte concentration at the catho
In fact, currents much greater than the limiting one a
readily passed through virtually ideally permselective catio
exchange membranes~overlimiting conductance mentione
in Sec. I!. Search for a mechanism for this and the rela
occurrence of the excess electric noise, provided the m
motivation for the study of electroconvection in strong ele
trolytes in general@15–18,31–34# and the present study, in
particular.

In order to investigate the stability of the quiescent co
centration polarization solution, Eqs.~44!–~47!, one has to
allow for lateral motions. In this case too the problem sp
into that for locally quasielectroneutral bulk and the boun
ary ~electric double! layer at the membrane/solution inte
face. Equations describing the ionic transfer and fluid flow
the bulk read@15#

c̄t1Pe~ v̄¹!c̄5D¹~¹ c̄1 c̄¹w̄!, ~48!

c̄t1Pe~ v̄¹!c̄5¹~¹ c̄2 c̄¹w̄!, ~49!

1

Sc
v̄ t52¹ p̄1Dw̄¹w̄1D v̄, ~50!

¹ v̄50, ~51!

whereas the boundary layer analysis provides, in additio
boundary conditions, Eqs.~42! and ~43!, an expression for
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2242 PRE 62I. RUBINSTEIN AND B. ZALTZMAN
electro-osmotic slip, that is the tangential fluid velocity at t
outer edge of the electric double layer.

For electro-osmotic slip at a conductive permselective
terface two fundamentally different regimes should be dis
guished in accordance with the magnitude of the electric c
rent through the interface.

The first ~quasiequilibrium electro-osmosis, or electr
osmosis of the first kind, following terminology of Dukhi
@29#! pertains to currents below the limiting value. For su
currents the diffuse part of the electric double layer preser
its common quasiequilibrium structure essentially identi
with that for zero current. Theory of quasiequilibriu
electro-osmosis at a permselective interface was develo
by Dukhin@35#. An essential part of this theory is accountin
for polarization of the electric double layer by the appli
tangential electric field resulting, in particular, in major la
eral pressure drops in the double layer due the lateral va
tion of the Maxwell stresses. This results, for the tangen
velocity u in the double layer, in the equation of the form

2 1
2 @~wz!

2#x1wxwzz1uzz50, ~52!

where z5y/« is the boundary layer coordinate. For
quaisiequilibrium boundary layer, potentialw(x,z) in Eq.
~52! is substituted from the solution of the Poisso
Boltzmann equation

wzz5 c̄~x,0!~ew2w̄(x,0)2e2w1w̄(x,0)! ~53!

of the form

w~x,z!5w̄~x,0!12 ln
e§/2111~e§/221!e2zA2c̄(x,0)

e§/2112~e§/221!e2zA2c̄(x,0)
.

~54!

Herec̄(x,0), w̄(x,0) are, respectively, the electrolyte conce
tration and the electric potential at the outer edge of
electric double layer and

§~x!5w~x,0!2w̄~x,0! ~55!

is the dimensionless§ potential.
Integration of Eq.~52! with Eq. ~54! yields for the electro-

osmotic slip velocity, instead of the common Helmholt
Smoluchowski formula

us5§w̄x ~56!

valid for an impermeable interface, the expression

us5§S w̄x1
c̄x

c̄
D 24

c̄x

c̄
ln

11e§/2

2
. ~57!

The peculiarity of Eq.~57! is that, for an ideally permselec
tive cation-exchange membrane maintained at a constan
tential (lnc̄1w̄5const, that is,c̄x / c̄52w̄x) and §→2`,
Eq. ~57! yields

us52~4 ln 2!w̄x . ~58!
-
-
r-

s
l

ed

a-
l

-
e

o-

That is, the factor at2wx ~electro-osmotic factor! tends to a
maximal upper value upon the increase of§ ~negative!. This
stands in contrast with the respective prediction of
Helmholtz-Smoluchowski formula, Eq.~56!, and is a direct
consequence of polarization of the electric double layer a
permselective interface.

Hydrodynamic stability of the quiescent concentration p
larization with a limiting quasi-equilibrium electro-osmot
slip, Eq.~58!, was studied in Ref.@36#. It was concluded that
electro-osmotic instability of the first kind, although possib
in principle near the limiting current, was unfeasible for a
realistic low molecular aqueous electrolyte. This conclus
followed from the fact that an electro-osmotic factor at le
one order of magnitude higher than the limiting value 4 ln
is required for this type of instability to occur. This conclu
sion is valid as long as the system, in particular the elec
double layer, remains at quasiequilibrium. Namely, th
ceases being the case when the current approaches the
iting value. We already saw that in this casec̄→0 and w̄
→2`, which makes Eq.~53! formally unsuitable for calcu-
lation of w in the double electric layer and, thus, through E
~52!, for calculation of electro-osmotic velocityus . This re-
flects a fundamental structural change which occurs in
system as it moves away from quasiequilibrium uponI
→I lim.

Generally, quasiequilibrium is typified by the division o
the system into a locally quasielectroneutral bulk and a q
siequilibrium boundary layer~diffuse double electric! layer.
This picture breaks down uponI→I lim as reflected, in par-
ticular, in the inconsistency of the local electroneutrality a
proximation, which appears in the basic concentration po
ization solution Eqs. ~44!–~47! in this limit. Indeed,
according to Eq.~45!

wyy~0!5
I 2

4

1

S 12
I

2D 2 →`, when I→I lim52.

This implies that for any finite«, however small, setting the
left-hand side of the Poisson equation~3! equal to zero be-
comes inconsistent. This was the motivation behind the st
of the space charge of the nonequilibrium electric dou
layer, which develops in the course of concentration po
ization when the interface concentration approaches z
and, accordingly, the local Debye length tends to infin
@37#. This study essentially consisted of a numerical solut
of the one-dimensional model problem, Eqs.~28!–~37!.

In Figs. 2~a! and 2~b! we present schematically the ion
concentrations and space charge density profiles obtaine
Ref. @37# ~and in a number of studies that followed
@30,38,39#! for a sequence of applied voltageV.

The respective results may be summarized as follows.
0,V5O(1) (I ,I lim), local electroneutrality holds in the
entire system except for the boundary layer of the order
thickness« at the left edge of the region. In the respecti
electroneutral region a linear ionic concentration profi
holds in accordance with Eq.~44!. The maximal slope of the
concentration profile in these conditions is 1~which corre-
sponds toI 5I lim52). This picture remains essentially vali
up to V5O(u ln «u) (I<I lim). For O(u ln «u),V,O(«21) (I
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'I lim), the following three regions may be distinguish
~from right to left!.The quasielectroneutral ‘‘bulk’’ region
has a linear concentration profile with the slope of appro
mately 1. This region borders on the left with the extend
diffuse space charge region of a width betweenO(«2/3) and
O(1), followed by the quasiequilibrium,O(«) thick, bound-
ary layer at the left edge. Upon a further increase of volta
up to O(«21) the extended space charge region reache
finite sizeO(1) and so does the current increment over
limiting value @0,I 2I lim5O(1)#.

The main, and perhaps the only importance of this obs
vation of development in the course of concentration po
ization of a nonequilibrium electric double layer with th
extended space charge region, lays in its contribution to
discovery of the so called electrokinetic phenomena of
second kind by Dukhin and his colleagues@14,29,40# ~see
also references in@29#!.

FIG. 2. Sketch of the dimensionless ionic concentrations~a! and
space charge density~b! profiles in the diffusion layer and nonequ
librium electric double layer («51022).
i-
d

e
a

e

r-
r-

e
e

Accurate analysis of nonequilibrium electro-osmotic s
at a flat permselective membrane with an applied voltagV
@V.O(u ln «u)# was carried out in Ref.@18#, resulting in the
expression

us52
1

8
V2

]2c

]x]y

]c

]y

U
y50

. ~59!

Derivation of Eq.~59! employed the asymptotic theory o
the nonequilibrium double electric layer, previously dev
oped by Listovnichy@41#, and amounted to carrying out a
analysis similar to that outlined above for quasiequilibriu
electro-osmosis. An account for polarization proved to be
more necessary here, since a large potential drop betwee
membrane surface and the bulk was concerned: tha
namely those conditions for which saturation of the elect
osmotic factor occurred for a quasiequilibrium electr
osmotic slip. For obtaining a better physical insight into e
pression~59!, it is worth noting thatcyuy51 is one half the
local current density through the membrane, which is
main local characteristic controlling the thickness of the no
equilibrium double electric layer and, thus, the electric p
tential in it. Noticeable also is the complete absence of
electric field from Eq.~59!. As shown below this greatly
simplifies the computations of the resulting bulk flow.

Summarizing, the relevant problem for time depend
ion transfer in the quasielectroneutral diffusion layer$2`
,x,`,0,y,1% at a permselective solid/liquid interfac
reads, omitting overbars,

S 11
1

D D ~ct1Pev¹c!52Dc, ~60!

2v5ui 1wj , ~61!

1

Sc
•v t52¹p1Dv, ~62!

¹v50, ~63!

y51:

cuy5151, ~64!

uyuy5150, ~65!

wuy5150, ~66!

y50:

cuy5050, ~67!

wuy5050, ~68!

uU y5052
1

8
V2

]2c

]x]y

]c

]y

U
y50

. ~69!
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We reiterate that boundary conditions Eqs.~67!–~69!, are
specific for electro-osmosis of the second kind, whereas E
~64!–~66! are the standard boundary conditions at the ou
edge of the diffusion layer, corresponding to a specifi
~unity! ‘‘bulk’’ concentration, vanishing normal velocity an
no shear. The Coulombic termDw¹w @compare with Eq.
~4!# has been omitted from Eq.~62! due to itsO(ln2 V/V2)
smallness for electro-osmosis of the second kind@18#.

With c(x,y) and v determined from Eqs.~60!–~69!,
w(x,y) is founda posteriorifrom the equation of continuity
of the electric current

¹~c¹w!50 ~70!

with boundary conditions

w~x,1!50, ~71!

cwy~x,0!5cy~x,0!, ~72!

at y50,1. @Once more, condition~72! stands for imperme-
ability of the ideally permselective cation exchange me
brane for anions, whereas the normalization condition~71!
specifies the arbitrary constant in the definition of the elec
potential.#

The boundary value problem, Eqs.~60!–~69!, possesses a
trivial ‘‘limiting’’ quiescent concentration polarization solu
tion @see Eq.~44! with I 5I lim]

c0~y!5y, ~73!

v05u0i 1w0 j 50. ~74!

Below we outline the linear stability analysis of this solutio
~see Refs.@17,18# for details!. The respective linearized
problem for the perturbationsc1(x,y,t) and v15u1i 1w1 j
reads

c1t1Pew15
2D

D11
Dc1 , ~75!

1

Sc
Dw1t5D2w1 , ~76!

w1uy5050, ~77!

w1yuy505 1
8 V2c1yxxuy50 , ~78!

w1yuy5150, ~79!

w1yyuy5150. ~80!

Equations~75!–~80! yield a spectral problem in the form

D11

2D
lj1bw5j92k2j, 0,y,1, ~81!

w(4)2S 2k21
l

ScDw91S k41
l

ScDw50, ~82!

j~0!50, ~83!

j~1!50, ~84!
s.
r

d

-

c

wuy50,150, ~85!

w9uy5150, ~86!

w8uy5052ak2j8~0!. ~87!

Herea5
def

1
8 V2, b5

def

@Pe(D11)/2D#; j andw are the Fourier
transforms

j~y!5E
2`

`

eikxc̄1~x,y!dx, ~88!

w~y!5E
2`

`

eikxw̄1~x,y!dx ~89!

of the spatial factorsc̄1 , w̄1 in the c1(x,y,t), w1(x,y,t)
representation

c1~x,y,t !5 c̄1~x,y!elt, ~90!

w1~x,y,t !5w̄1~x,y!elt, ~91!

wherek is the wave number andl is the spectral paramete
Recall thatl with a positive real part implies instability o
the quiescent limiting concentration polarization solutio
Eqs.~73! and ~74!.

Solution of boundary value problem, Eqs.~81!–~87!,
yields for l the algebraic equation

2
l

PeC sinhk
5

l1 cothl1

Sc21
1k cothk2

Scl* cothl*

Sc21
,

~92!

where

l* 5
def

Ak21l/Sc, l15
defAl

D11

2D
1k2

and

C52
k2a sinhl*

k coshk sinhl* 2l* coshl* sinhk
. ~93!

For a and b in the relevant range (Pe;1, 0.1,D,10, 0
,V2,104), all roots of Eq.~92! are real. Substitution ofl
50 into Eq. ~92! yields the marginal stability curve in th
form

1

8
V2

Pe~D11!

2D
54

sinhk coshk2k

sinhk coshk1k22k2 cothk
5
def

f ~k!,

~94!

( 1
8 V2@Pe(D11)/2D#. f (k) corresponds to instability!. We

point out the monotonic decrease off (k) with increasingk
towards the ‘‘critical’’ value 4, and, accordingly, the mono
tonic decrease of the threshold value ofV towards the limit
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V58AD/@(D11)Pe#. In Fig. 3 we present the marginal st
bility curve as defined by Eq.~94! in the V/k plane for Pe
50.5 andD51. For linear growth ratel Eq. ~92! yields for
largek

l5
~b Sc!1/3

V2/3
k5/31O~k4/3!. ~95!

The fact that according to linear stability analysis the p
turbation mode with infinitesimal wavelength is most u
stable suggests the need for a nonlinear wave number s
tion principle. Some information in this respect is provid
by the nonlinear convection computations described in S
III. As for a possible physical interpretation of this instabili
let us note that, taking into account Eqs.~46! and ~72!, the
slip condition, Eq.~59!, may be rewritten as

us52
1

8
V2

I t

I
, ~96!

whereI is the local transversal current density and subsc
t denotes differentiation in the lateral direction. For
‘‘seed’’ circulational fluctuation at the wall, the current de
sity drops in the direction of the circulation velocity whic
results, according to the minus sign in Eq.~96!, in a positive
feedback. ForV below a certain threshold, diffusional dam
ing dominates.

III. NONLINEAR STEADY STATE VORTEX
SIZE SELECTION

In this section we present some results of a numer
solution of the full nonlinear system, Eqs.~60!–~69!. We

FIG. 3. Marginal stability curve for nonequilibrium electro
osmotic instability (V: dimensionless voltage,k: dimensionless
wave member!.
-

ec-

c.

t

al

point out that the flow induced by electro-osmosis of t
second kind is the only type of nonlinear electroconvect
we have been able to investigate numerically so far.

The system@Eqs. ~60!–~69!# was solved by finite differ-
ences in the domain 0,x,H, 0,y,1 with periodic
boundary conditions atx50,H for variousH andV. Thus, in
Figs. 4~a!–4~c! we present the calculated families of stea
state flow streamlines forV5V11 andH55, 10, and 20,
respectively. The qualitative image emerging from the cal
lations for differentH may be summarized as follows. Vor
tices form in pairs; their size depends onH; a maximal size
of H exists for a given number of vortex pairs per box; up
the increase ofH above this size, an additional vortex pa
appears; the maximal vortex size, corresponding to the m
mal box size, roughly matches the size of vortices t
emerge for an infinite layer (H→`); this size, that is the half
width of the periodicity cell formed in an infinite layer, is o
order of the diffusion layer width; this reflects the gene
nonlinear mode selection pattern in this system as illustra
in Figs. 5–11. In these figures we present the time evolu
of a family of flow streamlines starting from a short-wav
periodic disturbance@Figs. 5~a!–10~a!# for V5V11, H52
in six sequent time moments, in parallel with the respect
Fourier spectrum of the maximum of the stream functi
F(x,y) in the normal directiony

FIG. 4. Steady-state streamlines for boxes of different size~di-
mensionless!: H55 ~a!, H510 ~b!, H520 ~c!.
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c~k!5U E
0

2

max
yP[0,1]

~F~x,y!!epkixdxU ~97!

@Figs. 5~b!–10~b!#. The emerging picture may be summ
rized as follows. We begin with a very small periodic unha
monic short–wave initial disturbance@Fig. 5~a! and 5~b!#
(k58, eight vortex pairs! and trace its evolution subject t
perturbation by a minor numerical noise. At the initial sta
the short-wave modes grow faster and dominate and, t

FIG. 5. Nonlinear mode selection: vortex evolution from t
initial shortwave disturbance,t50 (t is dimensionless time!: ~a!
flow streamlines;~b! Fourier spectrum of the stream function
maximum.
-

s,

maximum of the Fourier amplitude appears atk58 @Figs.
6~a! and 6~b!#. Eventually, these small vortices break u
through fusing and form four pairs of larger vortices with
longer lifetime@see Fig. 7~a!#. Accordingly, the Fourier am-
plitude maximum shifts tok54 with the short-wave mode
remaining at a very low but finite amplitude@Fig. 7~b!#. As
time goes on, these eight vortices become unstable too
start transforming into two pairs of still larger stable stead
state vortices@Figs. 8~a! and 9~a!#. In the Fourier spectrum
this results in the shift of the amplitude maximum fromk
54 to k52 @Figs. 8~b! and 9~b!#. The final four stable

FIG. 6. Same as Fig. 5,t51022.
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steady-state vortices and their Fourier spectrum are prese
in Figs. 10~a! and 10~b!.

IV. VORTEX OSCILLATIONS AND EXCESS
ELECTRIC NOISE

The solution of the problem, Eqs.~60!–~69!, further on
from the first instability thresholdV disclosed anothe
thresholdVcr , depending onH (Vcr.V11.1 for the ‘‘infi-
nite’’ layer H520) above which steady-state vortices b
came unstable. Namely, upon an incremental increase
voltage in the rangeV,V,Vcr , transition to a new stead

FIG. 7. Same as Fig. 5,t51.
ted

-
of

state occurred through a nonmonotonic, and , close toVcr ,
decaying oscillatory readjustment of the size and shape
viscous vortices, manifesting itself in decaying oscillatio
of the electric current through the interface. In a narrow vo
age range above the threshold the system approached
state of small amplitude periodic oscillations about a tim
independent average. Above this range, the attractor bec
chaotic. This is illustrated in Figs. 11~a!–11~c! by presenting
the calculated average current density

Ī ~ t !5
2

HE
0

H

~cwy!uy50 dx ~98!

FIG. 8. Same as Fig. 5,t53.



e

2248 PRE 62I. RUBINSTEIN AND B. ZALTZMAN
versus time for three sequent values of voltage (V5V11,
V11.1, V11.2) for the ‘‘infinite’’ layer (H520). Let us
note that due to periodic boundary conditions atx50,H the
average current densityĪ (t) does not depend ony. More-
over, due to Eq.~72!

Ī ~ t !5
2

HE
0

H

cyuy50 dx. ~99!

For a steady state, integration of Eq.~60! over the domain
$0,x,H,0,y,1% yields, using Eq.~63!, periodic bound-
ary conditions atx50,H and Eqs.~66! and ~68! at y50,1

FIG. 9. Same as Fig. 5,t53.5.
Ī ~ t !5
2

HE
0

H

cyuy51 dx. ~100!

Eqs. ~99! and ~100! provide a means for calculation of th
electric current without computing the electric potentialw.
For a periodic or chaotic attractor, Eq.~100! holds for the
space-time averaged current density, defined as

FIG. 10. Same as Fig. 5,t520.



-

ise
-

sure-

or-
r
r

to
ible

to

ge ’’

PRE 62 2249ELECTRO-OSMOTICALLY INDUCED CONVECTION ATA . . .
Ī̄ 5 lim
T→`

1

TE0

T

Ī ~ t !dt. ~101!

In Fig. 12 we presentĪ̄ versus voltage curve for the ‘‘infi-

FIG. 11. Average dimensionless current density evolution
wards the attractor:~a! steady state,V5V11; ~b! periodic oscilla-
tions,V5V11.1, ~c! chaotic oscillations,V5V11.2.

FIG. 12. Average dimensionless overlimiting current/volta
curve for an infinite flat membrane.
nite’’ layer. We note the nearly linear shape of the overlim
iting part of this curve.

Finally, in Fig. 13 we present the calculated current no
power spectrumv(k). The calculated noise power law ex
ponents,k521 for low frequencies andk524 for high
frequencies, are among those encountered in noise mea
ments at cation exchange membranes@1,2#.

V. HASTENING THE ONSET OF OVERLIMITING
CONDUCTANCE

Hastening the onset of overlimiting conductance is imp
tant for improving the efficiency of electrodialysis. In ou
previous publication@17# we studied the effect of nonlinea
interaction of small-scale electroconvective eddies due
electric inhomogeneity of membrane surface and its poss

-

FIG. 13. Membrane noise power spectrum.

FIG. 14. Comparison of voltage-current curve for a ‘‘wavy
membrane with that for a flat one.
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role upon mixing in the diffusion layer and the onset of t
overlimiting conduction. In this section, we discuss preci
tation of the latter by a slight periodic distortion of the fl
membrane surface on the length scale of the width of
diffusion layer. The possibility of an early onset of overlim
iting conductance has already been conjectured by Duk
and Mischuck in their pioneering paper on electroosmosi
the second kind@14#.

We solved numerically the version of the full nonline
problem, Eqs.~60!–~69!, for a periodically distorted mem
brane surface

y5110.1 sin~2px!, ~102!

which required reformulation of boundary conditions, Eq
~67!–~69! for a nonflat boundary. Nonflatness of membra
surface yields a thresholdless appearance of the vortex
at low voltages. This convection has, however, little effe

FIG. 15. Dimensionless concentration level lines~a! and stream-
lines ~b! at a ‘‘wavy’’ membrane,V58.15.
m

-

e

in
f

.
e
w
t

on the overall ionic transport across the diffusion layer un
voltage reaches some threshold-like value upon which
overlimiting conductance sets on. Shape of the respec
voltage-current curve is practically identical to that for a fl
membrane, whereas a 10% distortion of the flat membr
surface results in a 30% precipitation of the onset of ov
limiting conductance and a respective increase of the cur
compared to those for a flat membrane~see Fig. 14, slight
increase of the limiting current at a ‘‘wavy’’ membrane
due to the increase of surface area compared to the flat m
brane!.

In Figs. 15 and 16 we illustrate the changes occurring
the diffusion layer with the increase of voltage by present
the level lines of concentration and the stream lines forV
58.15 andV58.65, respectively. Worth noting is the deve
opment of a low concentration zone near the concave par
the membrane surface. For sufficiently high voltagesV
58.65), width of this zone reaches half of that of the diff
sion layer@Fig. 16~a!#.

FIG. 16. Same as Fig. 15 forV58.65.
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